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15th Annual Workshop on FLIM and FRET Microscopy — March 7-11, 2016
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What 1s FRET?



RET or FRET
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Forster Resonance Energy Transfer
Or
Fluorescence Resonance Energy Transfer
FRE

FRET can tell us about dynamic behavior of
biological molecules and biological systems



History and Basics of FRET

FOrster Resonance Energy Transfer



Theory of FRET Iin the 1920s

Energy transfer by electrodynamical dipole-dipole
Interaction proposed by Jean Perrin and Francis Perrin.

Their equation for distance dependence gave 15-25 nm
as the required separation for FRET.

Equation underestimated the dependence on separation
distance. I.e. interacting molecules need to be closer
than they thought.



Theodor Forster and FRET In the 1940s

FOrster derived new equations consistent with experiments

1
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- (L)6 R, — FOrster distance; the distance
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FOrster Resonance Energy Transfer happens at distances of 1~10 nm.
This is good for looking at protein-protein interactions.

Theodor Forster



What 1s FRET?

FRET is a process by which radiationless transfer of energy
occurs from a donor fluorophore in the excited state to an
acceptor molecule in the ground state in close proximity.
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First FRET Microscopy images using video
camera systems

* N-NBD-PE (donor, fluorescein) is excited at
436 nm and emits at 515-565 nm

« N-SRh-PE (acceptor, rnodamine) is excited at
546 nm and emits at 610 nm.

If excitation at 436 nm, we see emission at 610
nm if and, only if, the donor and the acceptor are

close together.

(Aex =436 Nm, A, = LP610 nm)

(Aey = 546 NM, A, = LP610 nm) (Aex =436 N, A, = 515-565 nm)
Uster and Pagano, J Cell Biol 103:1221-1234, 1986



Three conditions for FRET to occur



Condition 1: Spectral overlap >30%

FRET can occur when the emission spectrum of a donor
fluorophore significantly overlaps (>30%) the absorption
spectrum of an acceptor.
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No FRET if the spectrum is not overlapped.
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Condition 2. Distance between molecules <10 nm

Inverse relationship between energy transfer efficiency
(E) and sixth power of

1

1 1)
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" <Ro) r — distance between donor and acceptor

R, — Forster distance

E — Energy transfer efficiency

No FRET Close enough for FRET
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Condition 3: Favourable dipole orientation

9000(In10)k2@p [, ea(P)F (B)7*d
N,128m?n* f0°° F(9)dv

6 _
0 =

Kk? is the orientation factor

k% is 0 if the dipoles are perpendicular to
each other.

K% is at its maximum, 4, when the

dipoles are in series P -
Any k* between 1 and 4 is okay.
If dipoles are parallel, far field =4 B -3

fluorescence happens instead
k¥=( o5ty - 30058, cosh, )
t =distance between D and A
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FRET microscopy enables study of protein
Interactions in live cells

Benefits of FRET N-WASP-IQGAP1 Distance
microscopy _ T

- Live specimens
- Single cell assay

- Investigate subcellular
compartments

Plotting distance information rather

- Spatial and temporal than E% shows that the interacting
proteins are closer together at some

Information of the Interacting gjes than others.
proteins (Wallrabe et al. Cytoskeleton, 2013)



Available FRET microscopy
techniques

Wide-field or digitized video FRET (WF-FRET)
Laser Scanning Confocal FRET (C-FRET)
Spectral Imaging FRET (psFRET)
Multiphoton excitation FRET (2p-FRET)
Acceptor Photobleaching FRET (apFRET)
Lifetime Imaging FRET ( )
Photo-quenching FRET (PQ-FRET)
Label-Free FRET Microscopy (NADH-TRP)



Spectral FRET Microscopy
Interactions of eGFP-Racl and IQGAP1-mOrange in MDCK cells
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: 2-color FRET
Major contaminations in the FRET Channel

458 (Dex FRET Channel
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« Donor Spectral Bleedthrough (DSBT) — donor molecules excited by
donor excitation wavelength yield its fluorescence into the FRET
channel. What we call it as cross-talk.

« Acceptor Spectral Bleedthrough (ASBT) — acceptor molecules excited
by donor excitation wavelength yield its fluorescence detected in the
FRET channel.



Data Analysis—PFRET Plugin
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Contamination or bleedthrough correction

PFRET Analysis
Ratio Imaging E - [1 B ( I DA/I D)] Quenched Donor Uncorrected FRET PFRET

Quenched Donor Uncorrected FRET FRET . .
|

E% = 54.810%

BFP-GFP-Pit-1
protein
dimerization



Confocal FRET microscopy using the PFRET method

Donor (D) Acceptor (A) FRET
Channel Channel Channel

pFRET ‘A /D’ Ratio E%

Dr. Yuansheng Sun

Linear Correlation R: (0.8

2 3 4 5
‘Acceptor -to- unquenched Donor’ Ratio

Images of live cells co-expressing Cerulean- (donor) and Venus- (acceptor) tagged bZip were
acquired in the Donor, FRET and Acceptor imaging channels. The graph shows an increasing
trend of E% with an increased ‘acceptor -to- unquenched donor’ ratio, by either a 2" order
polynomial (solid) or linear (dashed) curve fitting.

(Zeiss 510 Meta; 63X / 1.4NA oil immersion; Donor Ex458 nm, Em470-500 nm; FRET : Dex 458
nm Em535-590 nm; Acceptor Ex 514nm)

Sun et al Cytometry A 83A:780-793, 2013



Acceptor photobleaching spectral FRET microscopy
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Live cells co-expressing Cerulean (donor) and Venus (acceptor) tagged bZip were excited by
a 458 nm laser line, and spectral images (A-stack for 470 ~ 640 nm) were acquired at the

same imaging conditions, before and after photobleaching the acceptor with the 514 nm
laser line (bleaching time: ~120 seconds).

Sun et al Cytometry A 83A:780-793, 2013



3-color FRET Microscopy



Normalized Fluorescence

Normalized Fluorescence

3-color FRET Microscopy
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Wallrabe et al., Cytoskeleton 70: 819-836, (2013)



Biophysical Journal 99, 1274-1283 (2010)

mVenus tdTomato

3-Color FRET
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Demonstration of the homo-dimerization of C/EBPa and its interaction with H1Pa
In live mouse pituitary GHFT1 cells by 3-color spectral FRET (3sFRET)
Microscopy.
(Zeiss 510 Meta, 63 X/ 1.4 NA Qil). Biophysical J. Vol. 99, 1274-1283, (2010).
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Representative images of

cells co-expressing Teal-

N-WASP, Venus-IQGAP1

and mRFP1-Cdc42, and

eXthItIr_]g 3-C0|0r H-WASP-IDEAF] E% M-WASP-Cded 2 E IEARP1-Cded? E%
FRET. Single

fluorescence and

composite images are
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and E%'’s for the

Indicated protein pairs

that exhibited E% LI B -
FRET within each ROI.

Leica SP5X, 63x 1.2 W; Cytoskeleton 70: 819-836, (2013)




FLIM Microscopy
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Two-photon FLIM Microscopy
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Chen and Periasamy, Molecular Imaging:FRET Microscopy and Spectroscopy, Chapter 13,
Oxford University Press, 2005.
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o

=rized C/EBPo-bZip in living cell nucleus using 1.0 + 1
/EBPc-bfip was tagged with either Cerulean (C) E
ifetime decay kinetics for the C-bZip w 0.8 - ,:
1d the presence of V-bZip (FRET acceptor) E ;'
measured decay data into a single or double- E EE
=ctively, with the measured instrument g %% ‘3
' = d threshold allowed fitting to the pixels in :'} : :

: 2 . | hromatin of the cell nucleus. The comparison N 044 : :
between the representative measured decay data points, the fitting curves E : :
D ﬂ{élad'ﬂﬁh&p@aﬁm intensity) images of the two cases clearly 2 55 § :
shows that the Cin cells expressing both C-bZip and V-bZip decayed faster : '

(or has a shorter lifetime) than that in cells expressing C-bZip alone, o : s Decay time (ns)

indicating that the C attached to bZip was quenched by the V attached to 0 5 3 6 a 10
bZip because of FRET. Scale bar, 10 um.

Investigating protein-protein interactions in living
cells using fluorescence lifetime imaging microscopy

Yuansheng Sun', Richard N Day? & Ammasi Periasamy’

"W.M. Keck Center for Cellular Imaging, Departments of Biology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA. *Department of
Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA. Correspondence should be addressed to A.P. (ap3t@virginia.edu).

Published online 11 August 2011; doi:10.1038/nprot.2011.364 Na.tu re PrOtOCOIS 6: 1324_1340 2011

Fluorescence lifetime imaging microscopy (FLIM) is now routinely used for dynamic measurements of signaling events inside
living cells, including detection of protein-protein interactions. An understanding of the basic physics of fluorescence lifetime
measurements is required to use this technique. In this protocol, we describe both the time-correlated single photon counting
and the frequency-domain methods for FLIM data acquisition and analysis. We describe calibration of both FLIM systems, and
demonstrate how they are used to measure the quenched donor fluorescence lifetime that results from Forster resonance energy
transfer (FRET). We then show how the FLIM-FRET methods are used to detect the dimerization of the transcription factor
CCAAT/enhancer binding protein-« in live mouse pituitary cell nuclei. Notably, the factors required for accurate determination and
reproducibility of lifetime measurements are described. With either method, the entire protocol including specimen preparation,

imaging and data analysis takes ~2 d.



Figure 7 | Investigation of the dimerization of C/EBPa-bZip in living

cell nucleus using FD FLIM-FRET microscopy. bZip was tagged with

either Cerulean (C) or Venus (V). (a) The intensity and lifetime images

of representative cells, which only express C-bZip (donor-alone control)
and that co-express C-bZip (FRET donor) and V-bZip (FRET acceptor),

are compared. The FD FLIM data acquired at the fundamental modulation
frequency (20 MHz) is displayed on the phasor plot. The comparison
demonstrates a shorter lifetime of Cerulean in the cell that expresses both
C-bZip and V-bZip. The lifetimes of C-bZip in the absence and the presence
of V-bZip were estimated by single- and double-exponential fittings,
respectively. (b) The average donor lifetime, obtained from ten cells that
expressed only C-bZip, was 3.15 ns (indicated by the black dot). The
apparent lifetimes for 80 regions of interest (R0Is) identified in ten cells
coexpressing C-bZip and V-bZip were then determined, and the range was

Longer lifefime

from 2.5 to 3.05 ns, resulting in a variety of energy transfer efficiencies (E) b '-”e”_”"e (ns) ‘% N
calculated on the basis of equation (3). To investigate how the quenched 1 e A 2%
C-bfip lifetimes were influenced by the acceptor-to-donor ratio, we roughly 3.2 1 -20%
determined the ratio using the intensities obtained in the acceptor and 3_0‘_' | 150
donor channels for each ROL. With all 80 ROIs, the lifetime (blue dots with a
dark blue trend line: R = 0.35) or £ (red trangles with a dark red trend line: 258 -10%
R = 0.19) shows a negative or positive dependency on the acceptor-to-donor 2.6 - 5%
ratio, respectively (scale bar, 10 pum). s 0

0

Acceptor:donor

Sun et al Nature Protocols 6: 1324-1340, 2011



TCSPC FLIM-FRET Microscopy
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Biosensor Probes

The genetically encoded biosensor probes enable noninvasive
detection of spatial and temporal characteristics of specific cell
signaling or metabolic events.

Biosensors typically contain reporter
modules consisting of donor and
acceptor FPs directly linked by a
sensing unit that detects a specific

FRET based Biosensors

cellular event. L il
Ex 440 1 Ex 4l FFIET
* If the biosensor conformation puts the L, T
acceptor (A) fluorophore close (<80A) s ’
to the donor, energy can be transferred e
directly by Forster resonance energy Qpen Conformaian LRI SO o

transfer (FRET).

Applications —
Ratio Biosnsor
Calcium biosensors
Intravital imaging



Which fluorophore to choose?

Not a trivial question!

Fluorophores broadly fall into 3 categories

 Organic dyes, such as FITC, Rhodamine, Alexa and Cy
varieties (secondary antibody-labeling, ligand-dye
conjugates, etc)

« GFP-type fluorophores, (Visible fluorescent proteins) such
as Cerulean, Teal, Venus, RFP, mCherry, mOrange, etc

« Semiconductor nanocrystals, widely called Quantum Dots

(QDs)

....... each with their advantages and disadvantages



Important fluorophore properties

e Size of fluorophore; Organic dyes are small, GFP mutants
are ~28-30 kd, QDs 1- >6 nm

« Quantum Yield (QY), particularly the donor in FRET (QY
changes from the published value upon conjugation or

fusion)

 Molar extinction coefficient, the higher-the better

 Relative brightness, linked to above, particularly relevant
for GFP-type fluorophores

 pH stability, particularly relevant for almost all FRET pairs
Alexas shows excellent pH stability

 Photo-stability; how quickly do they bleach?

R,—Vvalue for FRET-partners



FRET applications

If you conduct fluorescence microscopy .. you can do
FRET - with some extra steps.

Qualitative or Quantitative FRET Microscopy

Qualitative FRET microscopy

Do cellular components interact — yes/no?

 |Is there aconformational change —yes/no?

« Have two ‘fretting’ components separated —Y/N?

Quantitative FRET microscopy
« Are we observing specific or random interactions

e Relative distances between cellular components, i.e. is ‘A’
closerto ‘B’ or ‘C’

By quantifying ‘Regions of Interest’ (ROIs), we investigate
the distribution, effects etc of D & A



EBFP2 Blue Al et al. 2007 Dr. Robert Campbell

Cerulean3 Cyan 433-445 475—503 24 Markwardt et al. 2011 Dr. Mark Rizzo
mTurquoise2  Cyan 433-445 475-503 28 Goedhart et al. 2012 Dr. Theo Gadella
mTFP Teal 462 492 54 Ai et al. 2006 Allele Biotech

EmGFP  Green 487 509 39 Cubitt et al. 1999 Invitrogen
Clover Green 505 515 84 Lam et al. 2012 Addgene
mNeonGrn Green 506 517 92 Shaner etal. 2013 Dr. Nathan Shaner

Venus Nelencr 55 528 53 Nagai et al. 2002 Dr. Atsushi Miyawaki
Citrine 516 529 58 Griesbeck et al. 2001 Dr. Roger Tsien

AmberJr None 0 Koushik et al. 2006 Addgene
mKO2 Orange Sl 565 39 Karasawa et al. 2004; .
(Kusabira) J Sakaue-Sawano 2008  MBL International

Merzlyak et al. 2007;
mTagRFP-T Orange 555 584 33 M Evrogen

tdTomato Orange Shaner et al. 2004 Dr. Roger Tsien

Katushka

* Depends on illumination source;
T Y66C mutant folds, but does not absorb or emit - important control for FRET-FLIM.




Summary

* Three major conditions for FRET to occur —spectral overlap
(>30% D to A), distance between molecules (1-10nm), dipole
moment orientation (1-4).

* For 2-color FRET requires 2 fluorophores for 3-color FRET 3
fluorophores are required

* Spectral bleedthrough correction is required for quantitative
FRET data analysis

* Intensity based FRET can be implemented in any fluorescence
microscopy system by selecting appropriate filters for the
selected FRET pair.

*In FLIM-FRET method, one should follow the change in lifetime
of the donor in the presence (D+A) and absence of acceptor
(Donor alone).

* FLIM data analysis varies depending on the biological interest.

* Preparation of the FRET pair or labeling the proteins is
Important.
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Society of Photo-Optical Instrumentation Engineers (SPIE)
Photonics West 2015, San Francisco, CA, USA

January 28 - February 2, 2017

Visit SPIE web site http://www.spie.org/ for BIOS 2016
Multiphoton Microscopy in the Biomedical Sciences XVI
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Conference Chairs: Ammasi Periasamy, University of Virginia
Karsten Konig, Saarland University, Germany
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Students Poster Session Competition (SPSC-MP):
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