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Challenges in Optical Imaging
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Tissue Optics: absorption & scattering
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Reduced scattering coefficient of skin
Steven L. Jacques, Ulm, LALS-2014

OCT images and in-depth signal

Absorption and dispersion of water
Moller et al., J. Opt. Soc. Am. B, 26 (9), 2009

OCT : Examples of clear and turbid (scattering) tissues
M.G. Ghosn, V. V Tuchin, K. V. Larin, IOVS, 2007
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Tissue ‘optical windows’
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; ‘ Absorption (u,) and reduced scattering (L") coefficients, and light
Y. Zhou, et al. ]. Biomed. Opt. 21(6), 061007 (2016)  penetration depth (8) of peritoneum within tissue ‘optical windows
Bashkatov A. N. ez a/. Opt. Spectrose. 120 (1), 1-8, 2016

Collimated Transmittance Measurement :20% -glucose
ar T T ‘

Experimental data for rat muscle treatment with
20% glucose solution

P. Peixoto, et al., J. Biomed. Photonics & Eng 1(4) 255, 2016

Wavelength (nm)




ep E.A. Genina et al.: Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy [Review]

e e J. Biomed. Photon. Eng., 1(1), 22-58, 2015
- o G Optical clearing of biological tissues: prospects of
e, | ~ application in medical diagnostics and phototherapy

- * - - - - -
E.A. Genina™®’, A.N. Bashkatov'?, Yu.P. Sinichkin?, 1.Yu. Yanina®, V.V.Tuchin***
'N.G. Chernyshevsky Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia

Journal of
Biomedical Photonics
&
e Whole-brain
_‘.mh....._,,. > ™
control DMSO- US- US-DMSO- o ‘ - "','
OCA e
-'_ r =
250pum .\.
.
eYFP Jmm [ S0um
Rat skin in vivo Pancreas

Scleral tissue optical clearing:
The action of propylene glycol on the human eye ball - dropping protocol
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“*Fundamentals of optical
clearing



Immersion optical clearing method

Tissue Actual index
Interstitial fluid

Cell
Fibers

(= —]

Cytoplasm

nuckeus. [ g =pg(L- g) ~d2p(d/2)0¥(m -1)?

Organelle m=n /no
— s

= Refractive index matching of tissue/cell components and interstitial fluid
(ISF)/cytoplasm due to:

1) agent diffusion into the tissue/cell

2) tissue/cell dehydration caused by osmotic action of an optical clearing agent (OCA)
—Tissue shrinkage: less thickness and better ordering of collagen fibers with volume

fraction £(7) caused by temporal/reversible dehydration

b, =ps(1-9) ~ [1=£(9]*/[1+ £(9)]

=> Disruption of the hydration shell collagen (hydrodynamic radius)

V.V. Tuchin, Tissue Optics, 3" edition, SPIE Press, PM 254, 2015



Optical clearing agents
(OCAS)



In vitro measured optical clearing potential (OCP) at OCA application to dermis side

of human skin using a Franz diffusion chamber
B. Choi et al. “Determination of chemical agent optical clearing potential using in vitro human skin,” Lasers Surg. Med. 36, 72-75, 2005

Hydroxy-terminated chemical agent Refractive ~ Osmolality  OCP
index (mOsm/kg)

Glycerol 1.47 14,550 2.9+0.8
50% TMP (trimethylolpropanol) 1.43 6,830 2.2+0.3
100% TMP 1.47 13,660 2.1+£0.7
1,3-butanediol 1.44 22,050 2.4+0.7
1,4-butanediol 1.44 26,900 2.8+0.5
Ethylene glycol 1.43 22,640 1.9+0.6
MPDiol glycol (1,3-diol, 2-methyl-propane) 1.44 23,460 2.3+0.2
P-0062! 1.48 1,643 2.0+0.5

1 P-0062 is a polyethylene glycol based prepolymer (Univ. of California, Irvine)
OCP = 1/ (before)/,'(in 20 min after application)
Saccharides: glucose, sucrose, maltose, fructose

PEGs, Propylene glycol (1,2-propanediol), DMSO, et. al

lodine based non-ionic contrast media have lower osmolarity and tend to have
less side-effects: Omnipaque, Ultravist, Visipaque, etc.



Quantification
of optical properties
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Transmittance(%)
Reflectance({%)

T. Yu, X. Wen, V.V .Tuchin, Q. Luo,
D. Zhu, J. Biomed. Opt. 16 (2011)
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Dehydration Optical clearing




«»*Collimated transmittance,
free and bound water



Time dependence for collimated transmittance for the rat muscle treatment with glucose
(L.Oliveira, M.I. Carvalho, E. Nogueira, V. V. Tuchin JIOHS, Vol. 6, No. 2, 1350012, 2013; JBO, 2015)

OCA immersing sample

Collecting optics
support

The muscle sample is fixed on the

sides with wires (black dots) to stay

at the center of the assembly. The Above the glass, beam

wires have 0.5 mm height. diameter is reduced to
—_ 1 mm with a pinhole.

imated transmittance (A. U.)
.

reaching the support glass, the beam
diameter is reduced to 3 mm.

120 240 360 480 600 720 8§40 960 1080 1200 1320 1440 1560 1680 1800
Time (s)

The support glass, below the
sample, has 1 mm thickness. T

he sample has 0.5 mm thickness. I After the collimating lens and until
3em

After crossing the collimating lens,

. the beam has a diameter of 6 mm.
Base support

Tungsten - Halogen
lamp

Collimated transmittance (A. U.)
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Time (s)

Glucose 50%

Collimated Temittance (A. U.)
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Diffusion time of Glucose and Ethylene Glycol for rat muscle on

concentration in solution.
(L.Oliveira, M.I. Carvalho, E. Nogueira, V. V. Tuchin, Laser Physics, 2013, JBO, 2015)

|2 0.05°
D= = —ra
7t m°x302.9

=8.36x10"" cm?/s

a

50
15 20 25 30 35 40 45 50 55 60
EG in solution (%)

Diffusion time (s)

25 30 35 40
Glucose concentration in solution (%)

fSOlid art:0'244 30 35 40 45

EG and glucose in solution (%)

fwater natural — fbound water T ffree water — 0.161+0.595 =0.756




“+OC of pathological tissues



Diffusion time for healthy colon mucosa and tumor

Tissue type Mucosa
OCA concentration | 10% | 15% | 20% | 25% | 30% | 35% | 40% | 45% | 50% | 54%
Diffusion time , s 651 | 694 | 81.1 | 138.4 | 299.2 | 211.5 | 104.3 | 55.7
SD 0.2 3.2 6.1 5.9 4.7 6.1 1.3 5.9

Tissue type Tumor
Diffusion time , s 629 | 68.6 [ 71.1 | 73.9 | 136.1 | 320.6 | 234.9 | 139.0 | 82.7 | 58.4
SD 0.5 0.2 0.5 1.5 1.1 10.6 4.1 14.0 2.0 1.7

(L. Oliveira et al, Glucose diffusion in colon mucosa — a
comparative study between healthy and cancerous tissue, ALT-16)

Mucosa
Tumor

Tumor has ~5% more of free-water
content than mucosa

Glucose takes more time to diffuse
into tumor than into mucosa

(Software from: P. Peixoto, L. Oliveira, M. 1. Carvalho,
E. Nogueira, and V.V. Tuchin, Software development for
estimation of optical clearing agent’s diffusion
coefficients in biological tissues, J. Biomed. Photonics & Eng
1(4) 255, 2016)

25 30 35 40 45 50 55 60
Glucose concentration (%)

Normal mucosa shows similar results to muscle tissue (Oliveira ez al, 2013)



1. Biophotonics 1-15 (2015) / DOI 10.1002/jbio.201400138

FULL ARTICLE

Ex vivo optical measurements of glucose diffusion
kinetics in native and diabetic mouse skin

Daria K. Tuchina® -2, Rui Shi', Alexey N. Bashkatov?.3, Elina A. Genina®3, Dan 7

Dingming Luo', and Valery V. Tuchin'- 23
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Clearing efficiency was 1.5-fold better and glucose
diffusivity was 2-fold slower for diabetic skin




Speckle dynamic microscopy



Microscopy
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Speckle contrast imaging microscopy
K=0c/<I>~1/<V>,

o is the standard deviation of the intensity fluctuations
<I> is the mean intensity, and <V> is the mean velocity

Blood vessel visibility at topical treatment of rat skin in
vivo by a mixture of PEG-400 and thiazone

Zhu D., et al. J. Biomed. Opt. 15(2), 026008 (2010)
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J. Wang, Y. Zhang, T.Xu, Q.Luo, D.Zhu, “An innovative transparent cranial window based on
skull optical clearing,  Laser Phys. Lett., 9(5): 2012
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Skull optical clearing solution
(SOCS):

laurinol,

weak alkaline substances,
EDTA,

dimethyl sulfoxide (DMSO),
sorbitol, area A
alcohol,

glucose

White-light images: intact skull (a), SOCS — 25 min (b), removed skull of area A (c);
(d), (e), (f) — magnified images of the area A
SOCS SOCS

Laser speckle temporal contrast images



Polina A. Timoshina et al. Study of blood microcirculation of pancreas in rats
with alloxan diabetes by Laser Speckle Contrast Imaging, AD FLIM, 2017, poster
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Application of 70%-aqueous glycerol solution demonstrates 50%-decrease of blood flow
velocity in the group of diabetic animals, to 10" min blood flow velocity was completely
restored. Blood flow in the control group almost stopped and to 10 min has not been
recovered.
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OCT/Cartilage/Omnipaque as an OCA

A. Bykov et.al. , Imaging of subchondral bone by optical coherence tomography upon optical clearing
of articular cartilage, J. Biophotonics, 2015; DOI: 10.1002/jbio.201500130)

Cleared cartilage
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http://onlinelibrary.wiley.com/doi/10.1002/jbio.201500130/abstract

Synergetic effects of OCT wavefront shaping and optical clearing

H. Yu, P. Lee, Y. Jo, K. Lee, V. Tuchin, Y. Jeong, Y. Park, Synergetic effects of wavefront shaping and optical clearing
agent in optical coherence tomography, J. Biomed. Opt. 21 (12), 2016

Conventional Conventional ¢ Wavefront-shaping Wavefront-shaping
OCT w/o OCA OCT w/ OCA OCT w/o OCA OCT w/ OCA

a

Principle of optical clearing and
wavefront shaping in an OCT system

Before OCA

» Dissected mouse ear in glycerol
70% solution for 1 hr
»Histology of the ear
»Images acquired before the OCA
»Images acquired after the OCA
» Image optimized by WS with the
input power of 0.55 mW

» Images acquired for uncontrolled
beam of 0.55 mW
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“*Photoacoustic microscopy
and flow cytometry



Photoacoustic microscopy and flow cytometry
Y.A. Menyaev, D.A. Nedosekin, M. Sarimollaoglu, M.A. Juratli, E.I. Galanzha, V.V. Tuchin, and V.P. Zharov,
Skin optical clearing for in vivo photoacoustic flow cytometry, Biomed. Opt. Express 4 (12), 3030-3041 (2013)
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Nonlinear Microscopy

JenLab GmbH, Jena/Saarbriicken (http://www.jenlab.de/ ). Multi-photon microscope
MPTflex-CARS


http://www.jenlab.de/
http://www.jenlab.de/MPTflex-CARS.144.0.html

A. Sdobnov, M. E. Darvin,J. Lademann, V. Tuchin, Enhanced Two-photon Microscopy of Skin by Immersion
Optical Clearing, J. Biophotonics (2017)

100% o . o o . .
007 abeere! TPEAF and SHG images of skin layers

obtained ex vivo on porcine ear skin samples
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A. Sdobnov, M. E. Darvin,J. Lademann, V. Tuchin, Enhanced Two-photon Microscopy of Skin by Immersion
Optical Clearing, J. Biophotonics (2017)
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***Confocal Raman spectroscopy
of skin

River Diagnostics, Model 3510 SCA; Rotterdam, The Netherlands



Fingerprint Raman spectra of porcine ear skin at OC

A. Yu. Sdobnov et. al. J. Physics D: Appl. Phys. (2017)

Confocal Raman Microscope (CRM) for in vivo/ex vivo skin measurements
River Diagnostics, Model 3510 SCA, Rotterdam, The Netherlands: 785 nm, oil objective x50,
laser power 20 mW, exposure 5 s, resolutions <5 um and 2 cm!
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“*Nanoparticle labeling



Upconversion nanoparticles (UCNP) for deep-tissue imaging

A.P. Popov, E.V. Khaydukov, A.V. Bykov, V.A. Semchishen, V.V. Tuchin, Enhancement of upconversion deep-tissue imaging
using optical clearing, Proc. of SPIE-OSA 9540, 95400B-5, 2015

[NaYF4 matrix is doped with ions of ytterbium, erbium and thulium
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Optical Clearing for Ultrasensitive Imaging of Single Cells
Kinnunen M., et al, Optical Clearing at Cellular Level. J. Biomed. Opt. 2014, 19, 714009.

Yi Cuy, et al., Optical Clearing Delivers Ultrasensitive Hyperspectral Dark-Field Imaging for Single-Cell
Evaluation, ACS Nano (2016)

Tanev-Tuchin, 2006
— , Tanev, S, et al. J. Biomed. Opt.
ptica
Clearing - 11(6), 064037-1-6 (2006)
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From: V. Tuchin, Tissue Optics,
SPIE Press, 2015
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. . LASER & PHOTONICS
Optlcal Clearlng SPIE. Laser Photonics Rev., 1-26 (2013)/ DOI 10.1002/lpor.201200056 REVIEWS

Of Tlssues and B IOOd Tl Ssu E o PTI cs Abstract Tissue optical clearing technique provides a prospec-

Light Scattering Methods and tive solution for the application of advanced optical methods in
Instruments for Medical Diagnostics life sciences. This paper gives a review of recent developments
THIRD EDITION in tissue optical clearing techniques. The physical, molecular

and physiological mechanisms of tissue optical clearing are

overviewed and discussed. Various methods for enhancing pen-

v /,'C = etration of optical-clearing agents into tissue, such as physical
g methods, chemical-penetration enhancers and combination of
/ 7 A physical and chemical methods are introduced. Combining the

/ g : ;

tissue optical clearing technique with advanced microscopy im-

age or labeling technique, applications for 3D microstructure of

whole tissues such as brain and central nervous system with

unprecedented resolution are demonstrated. Moreover, the dif-

ference in diffusion and/or clearing ability of selected agents in

healthy versus pathological tissues can provide a highly sensi- recent advances in optical clearing of soft or hard tissue for in
tive indicator of the tissue health/pathology condition. Finally, vivo imaging and phototherapy are introduced.

LY
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Recent progress in tissue optical clearing

Valery V. Tuchin

Dan Zhu'-2:*, Kirill V. Larin®4, Qingming Luo"2, and Valery V. Tuchin*58:*

A new specml section of the Journal of Biomedical Optics
Tissue and Blood Optical Clearing for Biomedical Applications

Guest Editors:

Dan Zhu

Huazhong University of Science and Technology
Bernard Choi

University of California, Irvine
Elina Genina
Valery V. Tuchin

Saratov National Research State University

Published August 2016 http://spie.org/x1825.xml#Optical Clearing
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J of Biomedical Photonics & Engineering

Welcome to JBPE

| am very pleased to introduce the Journal of Biomedical
Photonics & Engineering (JBPE). This new, online-only,
open-access journal, published quarterly, is aimed at the
rapid dissemination of high-impact results in all areas of
biomedical engineering and photonics, from fundamental
studies to applied technology.

JBPE will publish original research letters (3-4 pages),
research articles (6-12 pages), and reviews (12-20
pages), as well as special issues. All submissions will
undergo rigorous reviewing in order to ensure high-quality
publications. Papers will be refereed by at least 2 experts
as suggested by the Editorial Board. The accepted
manuscripts will be published online first in the "Online
Ready" section before the wholeissue is available.

The Editorial Board is comprised of a fantastic group of
renowned researchers and has a diversity of experise
that covers all areas of biophotonics and biomedical
engineering. They will work hard to ensure that papers are
given careful and quick consideration to maintain the spirit
of rapid dissemination.

Starting a joumal with such lofty goals is challenging. | am
highly encouraged by superb articles that have already
been submitted. | wish to express my gratitude to many
individuals who have contributed to the successful start-
up of the JBPE. | thank all members of the Editorial Board
for their efforts in soliciting manuscripts and seeing them
through the review process.

Many strategic aspects of JBPE were developed in the
course of extensive discussions that | had with many
colleagues, and | continue to welcome your thoughts and
suggestions on how we can further improve the journal.

Valery V. Tuchin
Editor-in-Chief
Journal of Biomedical Photonics and Engineering

http://journals.ssau.ru/JBPE
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